Generate multiple RT time-window normalized matrices where one is shifted. Merge them using a specified method (mean or median) and return the result.
Source:R/higherOrderNormMethods.R
getSmoothedRTNormalizedMatrix.RdUses the function getRTNormalizedMatrix to generate multiple normalized matrices which are shifted respective to each other and finally merged into a single matrix. This could potentially reduce effect of fluctuations within individual windows.
Usage
getSmoothedRTNormalizedMatrix(
rawMatrix,
retentionTimes,
normMethod,
stepSizeMinutes,
windowShifts = 2,
windowMinCount = 100,
mergeMethod = "mean",
noLogTransform = FALSE
)Arguments
- rawMatrix
Target matrix to be normalized
- retentionTimes
Vector of retention times corresponding to rawMatrix
- normMethod
The normalization method to apply to the time windows
- stepSizeMinutes
Size of windows to be normalized
- windowShifts
Number of frame shifts.
- windowMinCount
Minimum number of features within window.
- mergeMethod
Layer merging approach. Mean or median.
- noLogTransform
Don't log transform the input
Examples
data(example_data_small)
data(example_data_only_values)
data(example_design_small)
retentionTimes <- as.numeric(example_data[, "Average.RT"])
dataMat <- example_data_only_values
performCyclicLoessNormalization <- function(rawMatrix) {
log2Matrix <- log2(rawMatrix)
normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast")
colnames(normMatrix) <- colnames(rawMatrix)
normMatrix
}
rtNormMat <- getSmoothedRTNormalizedMatrix(dataMat, retentionTimes,
performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100,
windowShifts=2, mergeMethod="median")