Representation of evaluation results by calculating performance measures for an an NormalyzerResults instance
Source:R/NormalyzerEvaluationResults.R
NormalyzerEvaluationResults.RdContains the resulting information from the processing which subsequently can be used to generate the quality assessment report.
Usage
NormalyzerEvaluationResults(nr, categoricalAnova = TRUE)
NormalyzerEvaluationResults(nr, categoricalAnova = TRUE)Slots
avgcvmemAverage coefficient of variance per method
avgcvmempdiffPercentage difference of mean coefficient of variance compared to log2-transformed data
featureCVPerMethodCV calculated per feature and normalization method.
avgmadmemAverage median absolute deviation
avgmadmempdiffPercentage difference of median absolute deviation compared to log2-transformed data
avgvarmemAverage variance per method
avgvarmempdiffPercentage difference of mean variance compared to log2-transformed data
lowVarFeaturesCVsList of 5 for log2-transformed data
lowVarFeaturesCVsPercDiffCoefficient of variance for least variable entries
anovaPANOVA calculated p-values
repCorPearWithin group Pearson correlations
repCorSpearWithin group Spearman correlations
Examples
data(example_summarized_experiment)
normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment)
#> Input data checked. All fields are valid.
#> Sample check: More than one sample group found
#> Sample replication check: All samples have replicates
#> RT annotation column found (5)
normResults <- normMethods(normObj)
normEval <- NormalyzerEvaluationResults(normResults)